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16, ABSTRACT 

The evolution of planetary nebulae and the production of X rays will be sum- 
marized from the li terature. Planetary nebulae emit  continuous radiation which 
originates by free-free transitions involving kinetic energy losses of f ree  electrons 
in  the electrostatic fields of ions, These free-free emissions a r e  responsible f o r  
the radiation observed in the radio frequency spectra.  They also contribute in  the I 
visible and infrared regions. Therefore, i f  X rays a r e  generated by planetary 1 
nebulae, i t  can be assumed that they will also be produced by free-free transitions. 1 

However, free-free radiation will be measured along with free-bound radiation. A ! 
formula i s  given for the intensity of the combined continuum for  an ionized gas with 
a Maxwellian distribution of the electron velocities. 
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THE GENERATI ON OF X R A Y S  I N  PLANETARY NEBULAE 

S U M M A R Y  

The evolution of planetary nebulae and the production of X rays will be 
summarized from the l i terature.  Planetary nebulae emi t  continuous radiation 
which originates by free-free transitions involving kinetic energy losses  of 
f ree  electrons in  the electrostatic fields of ions. These free-free emissions 
a r e  responsible f o r  the radiation observed in the radio frequency spec t ra .  They 
a l so  contribute in the visible and infrared regions. Therefore,  if X r a y s  a r e  
generated by planetary nebulae, i t  can be assumed that they will a l so  he produced 
by free-free transitions.  However, f ree  -free radiation will be measured along 
with free-bound radiation. A formula i s  given fo r  the intensity of the combined 
continuum for  a n  ionized gas with a Maxwellian distribution of the electron 
velocities.  

INTRODUCTION 

In a statistical study which was undertalcen to  determine the degree of 
correlation existing between the positions of X-ray sources  and classical  
cepheids, galactic novae, planetary nebulae, and Wolf-Rayet s t a r s ,  the cor re la -  
tion coefficients obtained for  the cepheids and Wolf-Rayet s t a r s  were smal l  
and those obtained for  the galactic novae and planetary nebulae were high. It 
can he concluded that X-ray sources a r e  more  strongly associated with d isk  
Population I1 objects than with ex t reme Population I objects. X r ays  a r e  
produced in supernovae a s  synchrotron radiation and in novae a s  deceleration 
(free-free)  radiation. Planetary nebulae emi t  continuous radiation which 
originates by free-free transitions involving kinetic energy losses  of f r ee  
electrons in the electrostat ic  fields of ions. These free-free emissions a r e  
responsible for the radiation observed in the radio frequency spectra .  They 
also contribute in the visible and infrared regions. Therefore,  if X r a y s  a r e  
generated by planetary nebulae, it can be assumed that they will he produced by 
free-free transitions also.  Distant encounters between protons and electrons,  
involving smal l  losses  of energy, a r e  more  numerous than close approaches 
which produce large energy changes. Therefore,  the free-free emission is 
m o r e  important a t  lower frequencies o r  longer wavelengths. 



THE EVOLUTION OF PLANETARY NEBULAE 

To maintain the energy balance in a planetary nebula, the s t a r  has  to 
possess  a degenerate core  with a contracting outer region. The most highly 
evolved s t a r s  approach the white dwarf s ta te .  Since the m a s s  lost during the 
formation of the planetary nebula occurs  a t  an  ear ly  stage, the surrounding 
shell i s  too faint to  be detected in la ter  s tages.  A significant number of the 
\\ hite dwarfs has  evolved through the stage of planetary nebulae. 

To  est imate chemical composition of a planetary nebula i s :  

E lenient H He C N 0 F Ne Na S C1 A r  K Ca 
log-N 12.00 11.25 8 . 7  8 .5  9 .0  5 .2  8.2 6 . 0  8 .0 6 .5  6 . 9  5 .8  6 . 2  

The planetary nebulae have an  original m a s s  of about 1 . 2  M with 
0 

a lifetime, af ter  nuclear reactions begin, of 7 x l o 9  years .  The star-nebula 
systems observed a s  planetary nebulae represent  the gravitational contraction 
phase following nuclear fuel burning in s t a r s  of M = 1 . 2  M Less  massive 

0 ' 
s t a r s  do not have to  lose m a s s  in this phase and will not be identified a s  
planetary nebulae. The more  massive s t a r s  may evolve in such a manner that 
the niass  loss  occurs  slowly, failing to produce the bright shel ls .  

L 
An evolutionary t rack  of log _r against log T on the Hertzsprung- 

L 

Russel l  diagram i s  shown in Figure i . ' ~ h e  positions of radius Ro = 0.062 
and R - 0. I ,  0.2,  and 0 . 4  parsec  a r e  indicated. Since the nebulae a r e  
expanding, evolution takes place in the direction shown by the a r rows .  

The electron density of a nebula, and the luminosity and temperatule  of 
i t s  central  s t a r  vary with the t ime t .  Initially N is large,  the luminosity e 
L equals 60 L the temperature T equals 32 000' K, and the nebula i s  

0' 
optically thick. The s t a r  evolves to L = 25 000 L T = 60 000" K ,  the 

0' 
nebula expands, and the optical thickness decreases .  At a t ime to,  I adius 
Ro, the nebula becomes optically thin. Fo r  to  < t ,  N continues to decrease 

e 
because of expansion. Then the temperature r i s e s  to 1 05' K a t  approximately 
constant L, and the optical thickness continues to  decrease during this 
phase. Thereafter  L decreases  rapidly; the temperature remains  a t  lo5 '  K 
until the luminosity declines to 100 L Finally, the decrease in lu~ninosity 

0 ' 



resulting froin the onset of degeneracy becomes inore important than the 
expansion, and the optical depth increases .  At a radius R the nebula 

i '  
again l~ecomes  optically thick. R o  = 0. 06 pc and R1 = 0 .6  parsec  

The resu l t s  of Figure i, the main sequence, the horizontal branch, and 
the white dwarfs a r e  drawn in the H-R diagram of Figure 2. Using an expan- 
sion velocity of the neh~tla of 20 km sec-l ,  a t ime of 1 . 7  x l o 4  yea r s  i s  obtained 
for  the evaluation f rom R o  = 0.06 pc to  R = 0 . 4  parsec.  The en t i re  t r ack  
shown in Figure 2 i s  described in approximately 5 x l o 4  years .  T racks  for 
t ~ v o  models, calculated by Hayashi and collaborators fo r  Russel l  mixture s t a r s  
evolving without nuclear processes ,  a r e  also included. An initial contraction 
a t  constant luminosity i s  a r res ted  by the effects of degeneracy and followed by 
cooling a t  constant radius.  These models show some measure  of agreement 
with the resu l t s  for  the central s t a r s  of planetaries,  because the luminosity 
drop in the la ter  s tages  of their  evolution is a consequence of degeneracy, and 
because the final stage of their  evolution points to the white dwarfs.  The 
average m a s s  of the central  s t a r s  of planetaries,  a s  well a s  of white dwarfs,  
is assumed to  be 0 . 6  M The average nebular Inass  is 0.6 M These s t a r s  

0' 0 ' 
belong to the disk population (Tables  I and 2 ) .  

There ex is t s  no satisfactory explanation of the processes  leading to  
m a s s  ejection and to  the increase of the radii  of the central  s t a r s  during the 
initial stage of their  evolution. 

THE PRODUCTION OF X RAYS 

The radiation emitted during encounters of e lectrons with ions in a 
fully ionized gas of low density i s  called "deceleration radiation. " The t e r m  
"free-free transitions" is customary f o r  the same  process  in  the astrophysical 
l i terature.  The formulas  for  the deceleration radiation by a Maxwellian 
distribution of e lectrons u i l l  be given. 

The initial and final energies  of a f r ee  electron may be represented by 
the expressions: 

E = i m v  and E 1 = E - h v  



The free-free emitted power per  unit volume of a gas  i s  obtained by 
integrating a quantity proportional to g/v over a distribution function propor- 
tional to the expression: 

It i s  then found that the weighted average of g for  a Maxwellian d is t r i -  
hution may be expressed in two ways: 

and 

E' E! -- 
ItT - 

g ( T ,  v )  = g ( E t  + hv, u )  e d kt 

The equation fo r  the power density per  sec-I bandwidth per  steradian 
emitted in free-free encounters is: 

This  formula yields the f ree  -free emission.  It contains the exponential 
factor,  because free-free emission of frequency v can occur only if the initial 
electron energy exceeds hv. However, deceleration radiation can be emitted 
by electrons of any initial velocity. In free-bound radiation, the electron i s  
captured by the ion. The two emissions will be measured together. 



The frcc-l~ound radiation differs f rom the I'ree-free emission Ijy the 
quantization of the final energy. The inclusion of the free-Ijound emission nil1 
cancel the exponential factor in the power density formula, approximately. 
The successive entry of more free-bound continua yields a saw-tooth function 
which remains constant on the average, so  that the exponential drop of the 
free-free emission i s  nearly cancelled by the free-hound contributions. At 
lo\\- frequencies o r  a t  high temperatures  the free-bound contribution becomes 
negligible. Applying the relevant Gaunt factor,  the emission spectrum f rom 
a gas for  a combined continu~un i s  given by the expression: 



This formula gives the intensity of the combined continu~un for an ionized 
gas  with a Max~vellian distribution of the electron velocities. The values of 
( g  + f )  a r e  given in Table 3 fo r  0 = 1 ,  which is equivalent to T = 1. 58 x io5"~< 
for  hydrogen. The free-bound continuum becomes increasingly important 
f rom h = i p  down. g ( T ,  v)  , alone, is to be computed only if: 

( T ,  1 )  ( T  v) i s  the quantity which has  t o  be compared with experimental 
emission data. 

In the absence of computed values of f ( T,  v) , g ( T ,  v) can be used if 
the exponential factor is dropped. 

Evaluating the total power fo r  100 A ,  which i s  the long-wave limit fo r  
X r ays ,  the following values a r e  substituted into the equation: 

C 
- 
v T N g + f 

joule m2 m sec-I " K  mm3 

1 . 8 2  948x 1 0-45 2 . 4 6 9 3 6 ~  l o 6  i.58x105 4 . 1 6 9 ~ 1 0 ~  6. 58 

The resu l t  obtained i s :  

P ( T y  v, = 1 . 7 3  x lom4' watt m-3 sterad-I (sec- '  bandwidth) -' . 
4n 



Figure 1. The Hertzsprung-Russell diagram for  the central  s t a r s  
of planetaries, (values of nebular radii ,  in parsecs ,  a r e  indicated) [I]. 

P L A N E T A R  IES \ 
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Figure 2 .  The Hertzsprung-Russell diagram showing main sequence, 
horizontal branch, planetary nebulae, and white dwarfs [ 11 . 
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TABLE I. OORT'S CLASSIFICATION O F  STELLAR POPUL,ATIONS [ Z ] .  

T Taur i  S t a r s  

Concentration 
Toward Center 

Distribution 

( Scl~warzschild) 
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TABLE 3. AVERAGE GAUNT FACTORS FOR O = 1 [ 3 ] .  
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